
Traffic-aware Buffer Management in Shared
Memory Switches

Sijiang Huang, Mowei Wang, Yong Cui∗
Department of Computer Science and Technology, Tsinghua University, China

Abstract—Switch buffer serves an important role in modern
internet. To achieve efficiency, today’s switches often use on-
chip shared memory. Shared memory switches rely on buffer
management policies to allocate buffer among ports. To avoid
waste of buffer resources or a few ports occupy too much
buffer, existing policies tend to maximize overall buffer utilization
and pursue queue length fairness. However, blind pursuit of
utilization and misleading fairness definition based on queue
length leads to buffer occupation with no benefit to throughput
but extends queuing delay and undermines burst absorption
of other ports. We contend that a buffer management policy
should proactively detect port traffic and adjust buffer allocation
accordingly. In this paper, we propose Traffic-aware Dynamic
Threshold (TDT) policy. On the basis of classic dynamic threshold
policy, TDT proactively raise or lower port threshold to absorb
burst traffic or evacuate meaningless buffer occupation. We
present detailed designs of port control state transition and state
decision module that detect real time traffic and change port
thresholds accordingly. Simulation and DPDK-based real testbed
demonstrate that TDT simultaneously optimizes for throughput,
loss and delay, and reduces up to 50% flow completion time.

I. INTRODUCTION

Switch buffer is used to absorb burst traffic and improve the

overall performance of the switch. Insufficient buffer results

in reduced port throughput [1], thereby impairing the network

quality of service [2]–[4]. To achieve high buffer efficiency,

the majority of today’s switches adopt on-chip shared memory,

instead of private memory that exclusively allocated for each

port [2], [5]–[7].

Shared memory switches rely on specific buffer manage-

ment policies to allocate buffer among different ports [2].

Without buffer management policies, a few ports can occupy

as much as the entire shared buffer space, blocking other ports

from benefitting from the shared memory, resulting in severe

unfairness between switch ports [7]. To avoid unfairness, the

simplest way is to split the total buffer evenly and allocate

it as private buffer for each port. However, the problem is

that ports only have access to its exclusive buffer space. This

limits buffer utilization when only a few ports are active, which

is against the basic principle of shared memory that buffer

should be dynamically shared among ports. For a long time,

researchers have believed that an ideal buffer management

should be somewhere in between complete sharing (no control)

and complete partitioning (evenly split), with high buffer

utilization as well as port fairness [7]–[9].

Many buffer management policies have been proposed in

the past three decades [7]–[15] to allocate buffer in shared

∗ Yong Cui (cuiyong@tsinghua.edu.cn) is the corresponding author.

memory switches. Although the design concepts and methods

of different schemes are diverse, the design goals of these

schemes are basically consistent, that is, pursuing the highest

possible buffer utilization, reducing packet loss and maximiz-

ing throughput, while ensuring queue length fairness between

ports. Since it was proposed over twenty years ago, the dynam-

ic threshold (DT) [7] policy has been used as the default buffer

management scheme by switch manufacturers [2] and various

congestion control related researches [5], [16]. Besides several

variants of DT [8]–[10], no significant progress had been made

until 2019, Stanford University hosted a workshop specifically

discussing buffer sizing [17] that re-emphasizes the importance

of buffering and its management in the network.

Existing buffer management policies fail to make full use of

the shared buffer due to misleading optimization goals: buffer

utilization [8] and queue length fairness [7]. More specifically,

when long-lived over-line-speed traffic arrives at a switch port,

blind pursuit of buffer utilization leads to buffer occupation

that does not contribute to port throughput but extends queuing

delay. On the other hand, misleading fairness definition based

on queue length impedes meaningless buffer occupation from

being evacuated, impairing burst absorb capacity of other ports

through additional buffer. Besides, queue length fairness ig-

nores the demand difference between different ports. Fairness

in queue length is not equivalent to fairness in throughput.

In light of the limitations of existing buffer management

policies, we aim to propose a buffer management policy that

optimize for metrics that actually have impacts on the quality

of service, i.e., throughput, loss and delay. Designing such

a policy can be challenging because it requires switch ports

to proactively detect port traffic and adjust buffer allocation

accordingly. More specifically, switch ports have to determine

the type of traffic it is transmitting in a timely manner with

limited port level information.

In this paper, we propose Traffic-aware Dynamic Thresh-

old (TDT), a buffer management policy that controls the buffer

allocation of shared memory switches by detecting port traffic

status in real time. TDT can fully utilize the shared buffer

to absorb burst traffic, avoid meaningless buffer occupation

through proactive evacuation, and ensure the throughput fair-

ness among ports at the same time. By using buffer only when

actually needed, TDT is friendly to loss-sensitive burst traffic,

throughput-sensitive long-lived traffic and delay-sensitive short

traffic in different switch ports simultaneously.

TDT uses a set of port-wise control states to differentiate

the status of different ports, and impose different thresholds to

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

978-1-6654-0325-2/21/$31.00 ©2021 IEEE

IE
EE

 IN
FO

C
O

M
 2

02
1

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

8-
1-

66
54

-0
32

5-
2/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
42

98
1.

20
21

.9
48

88
49

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 09:54:52 UTC from IEEE Xplore. Restrictions apply.

individual ports accordingly. The transition between different

port control states is determined by a state decision module

that detects port traffic in real time. The state decision module

of TDT is only composed of several counters, comparators

and triggers, avoiding dependency on the assumption of time

variables. When port traffic changes, TDT proactively raise or

lower port threshold according to port control state to allocate

buffer among different ports in a dynamic manner.

We evaluate TDT with ns-3 simulation and a DPDK-

based switch prototype, comparing TDT with existing buffer

management policies. Simulation results demonstrate that

when long-lived over-line-speed traffic exists, TDT can absorb

∼60% additional burst traffic while maintaining a similar

overall throughput and reducing overall queuing delay in the

switch, comparing to current policies. Experiments on real

DPDK testbed show that TDT reduces 12% average flow

completion time (FCT). Specifically, TDT outperforms DT

over 80% of the times and has an up to 50% reduction in

FCT. In summary, we make the following contributions:

• The first shared buffer management policy to the best

of our knowledge that optimizes for the problem of

meaningless buffer occupation (§III).

• A detailed design of threshold determination based on

port-wise control states and state decision module (§IV).

• Comprehensive evaluation based on large-scale simula-

tion and real testbed implementation (§V).

The rest of this paper is organized as follows: §II introduces

the background of our research and limitations of current

buffer management policies. §III overviews the key design

ideas of traffic-aware buffer managements. §IV gives the

design details of our possible version of traffic-aware buffer

management, TDT. Evaluation based on simulation and DPDK

testbed is presented in §V. Finally, §VI concludes this paper.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce current buffer manage-

ment policies. Then, we illustrate the limitations of existing

strategies as the motivation of our research.

A. Background

Shared memory switch. Figure 1 shows the architecture of

a typical shared memory switch. Shared memory switches are

output-queued switches with high speedup switch fabric that

can process packets from any input port almost immediately

and send them to designated output port queue [6]. To achieve

buffer efficiency, every output port can access the shared

memory pool which means theoretically any single port can

use as much as the entire buffer space. In practice, shared

memory switch rely on a specific buffer management policy

deployed on a control module (state decision module in

Figure 1) to allocate buffer for each output port.

Buffer management policies. Several buffer management

policies [7]–[15] have been designed to allocate buffer among

ports in shared memory switches. Current policies have two

main design goals. First, buffer should be fairly distributed

among different ports, i.e., no port is “starved” because a few

Link 1, ingress

Link P, ingress

Link 2, ingress

Link 3, ingress

Switch Fabric

State
Decision
Module

Output Queues

Shared Memory Pool

Link 1, egress

Link P, egress

Link 2, egress

Link 3, egress

Fig. 1. The architecture of a shared memory switch.

ports have occupied too much buffer [7]. And second, buffer

utilization should be as high as possible, i.e., free buffer space

when packets are dropped should be as small as possible [8].

In general, existing buffer management policies can be

divided into two categories: preemptive policies and non-

preemptive policies. For preemptive policies [13], [15], packets

that already in the memory can be overwritten, or “pushed

out”, by newly arrived packets. Preemptive policies have

been proved to be optimal in certain circumstances [13], [15]

whereas they are very hard to be implemented in practice

due to hardware limitations [7], [8]. On the other hand, non-

preemptive policies [7]–[12], [14], which only allow packets to

be dropped before entering the port queue, are more practical

to be deployed on actual devices. To achieve fairness, non-

preemptive policies often use thresholds to restrict the amount

of buffer each port can have access to. In this paper, we only

consider non-preemptive policies in design for practicality.

Dynamic threshold policies. Among a wide variety of non-

preemptive policies, dynamic threshold policies [7], [8], [10]

are most widely used by switch vendors [2] due to their

simplicity of deployment. In dynamic threshold policies, queue

length of every switch port is restrained by a threshold, which

dynamically changes with switch status indicators (e.g., re-

maining buffer space). Classic dynamic threshold scheme (DT)

[7] sets its threshold, which is shared by all ports, proportional

to the current amount of unoccupied buffer space. More

specifically, threshold at time t can be calculated by

T (t) = α · (B −
∑

i

Qi(t)) (1)

where T (t) is the threshold at time t, B is the total buffer

size, Qi(t) is the queue length of port i at time t, and α is a

control function normally set to a constant value for simplicity.

To avoid unfairness when traffic changes, DT reserves a certain

amount of buffer in “stable state” (i.e., when queue length is

equal to port threshold).

On the basis of the classic dynamic threshold scheme, in

recent years, researchers have proposed several variants to

cope with specific problems in networking. A typical one is the

Enhanced Dynamic Threshold (EDT) [8]. EDT improves the

burst absorbing ability of DT by temporally relaxing threshold

restraint to absorb microburst traffic in data center networks.

Although dynamic threshold policies have made huge success

in the past decade, we will demonstrate the limitations of

existing dynamic threshold policies in the next part.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 09:54:52 UTC from IEEE Xplore. Restrictions apply.

B. Motivation

The optimization goal of current buffer management strate-

gies is to maximize total throughput, minimize overall packet

loss while maintaining port fairness [7], [8], [10], [15]. In

order to optimize the metrics above, current policies focus

on maximizing buffer utilization and fairness based on queue

length, for the reasons that “drop packet only when inevitable”

intuitively means fewer packet losses, and “different queue has

similar chances to reach the same queue length” intuitively

equals to fair buffer distribution among different port queues.

Unfortunately, neither of these intuitions is actually correct.

In the following, we show why blindly pursuing buffer uti-

lization or using queue length to measure fairness actually

results in meaningless buffer occupation, which further leads

to performance degradation.

Blind pursuit of utilization. Existing buffer management

schemes contend that buffer should be as full as possible when

switch port is overloaded, otherwise buffer is not fully uti-

lized [7], [8], [12]. This opinion comes from ancient cognitive

habit that if resources are not used, they are wasted. However,

resources that are not wasted are not equivalent to resources

that are beneficial. Due to the transmission rate limitation of

the switch port, switch buffer management is a problem in

which the law of diminishing marginal utility [18] is very

obvious. For an overloaded port (i.e., a port transmitting an

aggregate flow whose rate is over port line speed), throughput

limitation comes from port line speed instead of available

buffer. In that case, additional buffer allocated for this port

brings little benefit to overall throughput. Although high buffer

utilization in this case does not directly lead to performance

degradation, when multiple ports are competing for buffer,

high utilization potentially impair the absorption capacity of

ports that became active later. On the other hand, maintaining

high buffer utilization results in longer port queues, which

prolongs the queueing delay of delay-sensitive packets.

Misleading definition of fairness. Fairness is one of the most

important considerations when designing a buffer management

policy. Current policies either use descriptive definition of

fairness [7] or use queue length of competing ports to measure

fairness [8]. A buffer management scheme is considered fair

if different ports that start active at different times can achieve

similar queue length. Under this definition of fairness, the

fairest allocation strategy is evenly split, i.e., the shared

buffer pool is equally distributed among all output ports as

private buffer. However, the above fairness description ignores

the difference in demand between ports and only limit the

fairness of the queue length, an intermediate variable, without

considering the fairness of metrics that actually matter (e.g.,

throughput). For example, Figure 2 shows a simple example

generated by simulation where two ports with different flow

rate competing for the whole buffer space. With the fairness

definition based on queue length, the resource (buffer) should

be equally divided between these two ports. Port A receives

full additional throughput with the help of buffer while port B

can only partially benefit from the buffer. Obviously, relative

(a) Queue length fairness. (b) Throughput unfairness.

Fig. 2. Queue length fairness is not equivalent to throughput fairness. Same
queue length threshold shared by ports with different throughput demand
causes unfairness in throughput.

to the ideal throughput, port B is affected more than port

A, as a result of buffer allocation. Therefore, in terms of

throughput, fairness measurement based on queue length is not

always fair. This misleading definition of fairness has caused

unnecessary restrictions in the design of existing schemes.

Given the reasons above, in this paper we will directly use

throughput as a measure of fairness.

Meaningless buffer occupation. As a result of blind pursuit

of utilization and misleading definition of fairness, current

strategies tend to maintain relatively longer queues in active

ports, keeping average queue length at a high level. However,

as discussed above, buffer occupation is not a sufficient con-

dition for neither high throughput or fairness. On the contrary,

maintaining long port queues undermines the overall capacity

of the switch to absorb potential burst traffic, and extends the

overall queuing delay of the switch [5]. Therefore, reducing

meaningless buffer occupation is a vital step toward better

buffer management policies. In order to achieve that, a buffer

management policy needs to be able to determine whether

or not the buffer occupation at a specific time is beneficial.

In conclusion, there is an urgent need for a buffer scheduling

strategy that can perceive changes in the traffic status of switch

ports and take actions accordingly.

III. TRAFFIC-AWARE BUFFER MANAGEMENT

Discussion in §II-B have shown that the key factor causing

performance degradation is buffer occupied by ports over-

whelmed by long-lived over-line-speed traffic. Solving this

problem requires a buffer management policy that can deter-

mine whether a switch port is transmitting long-lived over-line-

speed flows or short bursty flows. In this section, we present

the key ideas of traffic-aware buffer management. By real time

detection of port traffic, a traffic-aware buffer management

policy is expected to fully utilize buffer when absorbing burst

traffic (§III-A) or proactively evacuate meaningless buffer

occupation (§III-B) when traffic changes.

A. Burst absorption

In the context of this paper, burst traffic refers to fast

(transmitting at over the port line rate) but short (no longer than

switch buffering time1) flows that arrive at switch port [19].

1Switch buffering time is the time switch can buffer packets arriving at the
line speed of the port, e.g 1MB buffer on a 16-port switch can be equivalently
expressed as 500us buffer per port with 1Gbps line rate.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 09:54:52 UTC from IEEE Xplore. Restrictions apply.

In other words, we only consider burst that can be fully

absorbed if it can monopolize all the buffer. Otherwise, buffer

management policies is futile for this flow because no possi-

ble allocation can achieve lossless transmission. Burst traffic

caused by “incast” scenario often carries deadline-sensitive

short messages [5], [20]. Retransmissions triggered by packet

loss will result in the service carried by this flow missing its

deadline [4], [21]. It can be concluded that this sort of burst is

loss-sensitive, which means the optimization goal is lossless

transmission. Once packet loss occurs the absorption fails so

the number of packet loss, except zero, is irrelevant.

For a single burst, buffer management policy should lever-

age as much as possible buffer space to avoid packet loss. In

this paper, we share a similar basic design idea to absorb burst

traffic as EDT [8]. When burst traffic arrives at a port, port

queue length should not be restrained by the normal threshold.

If the burst traffic transmission is completed or exceeds the

buffer capacity of the switch, buffer management should

quickly react to traffic changes by putting the corresponding

ports back under the normal threshold control.

The most difficult part of design is to determine whether a

port has started or finished transmitting burst and anticipate

whether buffer can fully absorb that burst. Traffic detection

is expected to be sensitive and accurate, otherwise the buffer

management policy will not be able to change the threshold

in a timely fashion, resulting in inability to fully absorb burst

traffic or a single port occupying too much buffer for too long.

Based on the above discussion, we propose several condi-

tions for traffic status judgement. First, we define several traffic

states to represent typical port traffic status. When a port is idle

or transmitting under-line-speed traffic, it is “underloaded”.

“Overloaded” port refers a port that transmitting short burst

flows. And a port transmitting long-lived over-line-speed flows

is called an “overwhelmed” port. Conditions for judgement of

port traffic state are listed as follows:

• A port becomes “overloaded” when burst traffic arrives at

this port. When a port becomes “overloaded”, its queue

length increases while no packets are dropped [8].

• A port becomes “underloaded” when over-line-speed

traffic transmission has completed. When a port becomes

“underload”, there are consecutive packet dequeue events

between packet enqueue events.

• A port becomes “overwhelmed” when over-line-speed

traffic exceeds buffer capacity. Indications for a port

being “overwhelmed” are buffer overflow and consecutive

packet drops.

Burst absorption only applies to “overloaded” ports. Be-

cause extra buffer can only be of help when there is possibility

to fully absorb burst traffic. Extra buffer is needless to “Un-

derloaded” ports and useless to “overwhelmed” ports. Burst

absorption should be terminated as soon as an “overloaded”

port becomes “underloaded” or “overwhelmed”. Port traffic
state will be used to determine port control state. Detail

designs of port control states will be shown in §IV-A.

B. Proactive evacuation

When a port is transmitting long-lived over-line-speed traf-

fic, no amount of buffer can absorb the part of traffic that

exceeds line speed. It is worth pointing out that typical long-

lived over-line-speed traffic is not common in switch for the

purpose of congestion control algorithm (CC) [16], [22]–

[24] is to avoid continuous overload scenarios. As a very

recent cencus [25] have shown, TCP CUBIC [24] remains

the dominant TCP variant on the internet and undocumented

TCP variants have occupied a non-negligible proportion on

the internet, some of which may focus more on maximizing

link utilization when facing competition instead of maintaining

a relative short queue like TCP BBR [23], making buffer

occupany by long-lived traffic a reasonable concern. In the

context of this paper, long-lived traffic is a relative concept,

which refers to aggregated flows whose duration exceeds

switch buffering time. It is possible that the duration of an

aggregated flow fits the description of long-lived traffic due

to untimely response or temporal failure of CC [16], [22].

The rationality of this description is that if a flow exceeds the

buffer capacity of the switch, even if its absolute duration is

relatively short, from the perspective of the switch, this flow

is sufficient to be considered as long-lived.

When a port is transmitting long-lived over-line-speed traf-

fic, port serving rate cannot match arriving rate, causing rapid

growth in port queue length. Once the queue length matches

the port threshold, it will remain stable until transmission of

the whole flow has completed and consecutive packet drop

will occur due to threshold limitation. However, as discussed

in §II-B, buffer occupation in this scenario does not benefit

port throughput but seriously reduces the amount of buffer

that can be used by other ports and extend overall queuing

delay. Therefore, if a port is transmitting long-lived over-line-

speed traffic, its port queue should be proactively evacuated,

for the purpose of avoiding meaningless buffer occupation.

Proactive evacuation can be achieved with a simple mech-

anism. When a switch port determines that the traffic its

transmitting is long-lived and over-line-speed, it proactively

lower its port threshold in order to reduce its queue length. It is

worth noting that queue length reduction in this circumstance

dose not affect port throughput. When the transmission is over,

buffer management policy should quickly restore its threshold

to normal threshold for fairness consideration.

Proactive evacuation only applies to “overwhelmed” ports.

For the reason that additional buffer to “overwhelmed” ports

does not bring extra throughput, whereas long-term buffer

occupied by these ports potentially impedes other ports from

leveraging the same buffer space to absorb bursts, and increas-

es the delay caused by queuing. Proactive evacuation should

never be activated unless there is complete confidence that a

port will remain in “overwhelmed” state for a relatively long

time thus port throughput is determined by port line speed,

notwithstanding the reduction of queue length. Once a port is

no longer in “overwhelmed” state, proactive evacuation should

be terminated instantly to avoid throughput loss.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 09:54:52 UTC from IEEE Xplore. Restrictions apply.

Normal AbsorptionEvacuation

Port overwhelm

Port overload

Port underload
or Port overwhelm

Port underload

Fig. 3. Port control state transition diagram of TDT.

IV. TRAFFIC-AWARE DYNAMIC THRESHOLD

In this section, we present a possible design of traffic-aware

buffer management policies, Traffic-aware Dynamic Thresh-

old (TDT). On the basis of classic dynamic threshold [7], TDT

controls port thresholds by assigning a traffic state indicator to

each port and detecting traffic changes in a time-independent

way. Our design controls threshold on the port level, without

maintaining flow-level information [14], which gives our de-

sign natural scalability. Moreover, Parameter tuning of TDT is

more convenient than existing ones, because it only considers

the parameters of the switch itself, and avoids the use of

network state-related parameters (e.g., burst duration as in

EDT [8]). At the end of this section, a simple but typical

example is given to show how TDT works.

A. Port-wise control state

In TDT, each switch port has three possible control states.

When the traffic is relatively mild, the port is in “normal”
state and controls its queue length by the shared dynamic

threshold as in equation (1). When a port is transmitting burst

traffic, port state transits to “absorption”, temporally raising

the threshold to absorb burst traffic as much as possible.

On the other hand, when a port is transmitting long-lived

over-line-speed traffic, the port turns to “evacuation” state

that proactively evacuate the port queue by lowering the port

threshold. State transition diagram is shown in Figure 3.

“Absorption” state. In “absorption” state, port threshold is

the total amount of buffer divided by the total number of

ports in “absorption” state. “Absorption” state is triggered

by port becoming “overloaded”, which indicates that the

port is transmitting burst traffic. Therefore, trigger condition

for “absorption” control state is the same as the judgement

condition of port becoming “overloaded”, that is: port queue
length increases while no packets are dropped.

For fairness consideration, a port should quickly lower the

threshold and return to the “normal” state when additional

buffer is no longer needed. Under two circumstances additional

buffer is no longer beneficial: first, the port has finished

transmitting burst traffic and second, the size of traffic exceeds

buffer capacity. In other words, switch should cease buffer

control in the “absorption” manner when a port has transit

from “overloaded” state to either of the other two states.

For the former condition, two possible scenarios exist: a)

After the burst traffic transmission is completed, no traffic

continues to be transmitted on this port, or the rate of traffic

that continues to be transmitted is low, which is manifested as

Tr1
reset

trigger
out

Tr2
reset

trigger
out

drop
dequeue
enqueue

NEC

inc

dec

reset

out

DEC
inc

reset
out

OC1
reset

inc
out 1

OC2
reset

inc
out

1

buffer overflow

DC
inc

reset out

output1

output2

COMP
B

A A>Bqueue length

lower bound

1

1

Fig. 4. Circuit logic of state decision module.

consecutively packets dequeue from the port queue; b) After

the burst traffic transmission is completed, there is still traffic

of a certain rate (within the line speed of the port) being

transmitted in the port. In that case, queue length will decrease

slowly, resulting in the port occupying excessive buffer for a

long time after the completion of the burst traffic. Cumulative
packets dequeue from the port queue should be restricted to

ensure timely return to the “normal” state.

For the latter condition, even the entire buffer is not enough

to avoid packet drop, which means that this “burst” traffic

is actually long-lived, at least from the perspective of switch

buffer, and the port is actually in “overwhelmed” state. In that

circumstance, buffer overflow event will occur, indicating a

state transition back to the “normal” state.

“Evacuation” state. In “evacuation” state, port threshold is

the total amount of buffer divided by the total number of

ports. “Evacuation” state is triggered by consecutive drop
events, which indicates the port is transmitting traffic that

cannot be absorbed by buffer, i.e., long-lived over-line-speed

traffic. A port should return from “evacuation” state to “nor-

mal” state once the long-term traffic has finished transmitting

and port traffic state becomes “underloaded”. Consecutively
packets dequeue from the port queue can indicate port being

“underloaded” for most cases. We use a lower bound on queue

length for “safety reassurance” in case over-line-speed traffic

is followed by traffic transmitting at slightly below port line

speed so that there might not be consecutive packets dequeue.

B. Time-independent state decision

To be directly deployed on high speed switches, buffer

management policies should be able to directly interact with

port signals. This means circuit level design is needed for a

practical buffer management policy. TDT uses a state decision

module in each output port to detect traffic state and decide

port control state. State decision module leverages signals of

packets enqueue, dequeue and drop in the port, as well as state

information such as queue length and buffer overflow signal.

Two-bit output is generated by the state decision module

whenever any of the above signals triggers a state decision.

Next state of the port is determined by the two-bit output

and the following mapping rules: (0, 0) → ”normal” state; (1,

0) → ”absorption” state; (0, 1) → ”evacuation” state. The state

decision module consists of three parts: absorption decision,

evacuation decision and restoration decision. The circuit logic

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 09:54:52 UTC from IEEE Xplore. Restrictions apply.

design of port state decision module is shown in Figure 4.

Port state decision module is composed by several counters,

triggers and comparators. Notice that timers are not part of

state decision module. This is an important design choice in

TDT that we will explain later.

Absorption decision. The core part of absorption decision

is the Net Enqueue Counter (NEC) that keeps tracking the

amount of net enqueue packet. When NEC reaches it thresh-

old, it will trigger the first trigger (Tr1) to inform a state

transition from “normal” state to “absorption” state. Function

of NEC is to detect rapid queue length increasing in the

condition that no packets are dropped, which means there

should be several reset conditions for NEC if the above

requirements are not met. First, if packet drop event occurs,

remaining buffer is not sufficient to absorb burst traffic, thus

NEC should be reset for future burst detection. Second, if the

first output counter (OC1) reaches its threshold, indicating at

least a certain amount of time has passed before NEC reaches

its threshold, it can be assumed that the arriving rate of traffic

does not meet the speed requirement of burst traffic, thus NEC

should also be reset. Notice that OC1 serves a similar role of

determining a “time out” event, yet we use an output counter

instead of a timer.

Evacuation decision. The Drop Counter (DC) is the core

of evacuation decision. The value of DC keep adding with

packet drop events in each port. When the value of DC

reaches its threshold, a signal will be sent to trigger the second

trigger (Tr2) to transit port control state to “evacuation”.

“Evacuation” state should only be triggered by consecutive

packet drop events instead of long-term accumulation of

packet dropping. Therefore, when Dequeue Counter (DEC)

detects consecutive packet dequeue events, it will send a signal

to reset DC to restart the counting.

Restoration decision. When a port is in the “absorption” state

or “evacuation” state for a long time, it may affect the ability

of itself or other ports to maintain line-speed transmission,

causing fairness problem. When a port is in “absorption” state,

there are three possible conditions indicating state restoration:

1) DEC reaches its threshold, indicating burst traffic has fin-

ished transmitting; 2) the second output counter (OC2) reaches

its threshold, indicating the port has already transmitted burst

traffic of the maximum possible size allowed by the switch;

3) buffer overflow, which is the sign that the buffer is unable

to fully absorb the burst traffic.

On the other hand, if a port is in “evacuation” state, there

are two conditions for state restoration: 1) DEC reaches its

threshold, indicating that the port is no longer ”overwhelmed”;

2) queue length is less than a lower bound. The latter condition

serves the role of a “safety reassurance” if the over-line-speed

traffic is followed by traffic transmitting at a rate slightly

lower than the line speed. In that case, DEC might not reach

it threshold yet evacuation should be terminated whereupon

queue length is used for restoration decision.

Time-independent design. As mentioned above, unlike exist-

ing method [8], TDT avoids the use of timer in the design

of state decision module. Instead, TDT uses two output

counters to indicate “time out” event. Two major reasons are

behind this design choice. First, output counters can adjust

the trigger interval according to the change of port traffic.

More specifically, if a port is overloaded, port queue cannot

remain empty, in this case, output port will definitely transmit

at maximum speed, i.e., port line speed. Output counter is

equivalent to a timer in that case. Second, the timer timeout

setting usually needs to consider the changes of the network

environment which means parameter of the timer often needs

retuning when network condition changes. On the contrary, the

parameter of output counters is directly related to switch buffer

settings, which means using output counters can help achieve

designs independent to the often inaccurate assumptions on

specific network environments.

C. Convenient parameter setting

In TDT, several parameters needs tuning before deployment.

As discussed above, TDT avoids the use of time-related

parameters. Only threshold of several counters and one input

of one comparator requires setting. We assume that the line

rate of all output ports are equal in the same switch for

simplicity. The switch has a buffer size of B and n ports.

NEC and OC1 together make absorption decision thus their

thresholds should be set together. NEC should detect rapid

queue length growth, thus a smaller NEC threshold means

TDT is more sensitive to small burst and larger NEC would

mean otherwise. In practice, the evenly split threshold B/n
is good enough for most cases. OC1 limit the speed of burst

traffic. Burst traffic with speed less than a certain value cannot

trigger NEC because OC1 will reset NEC in advance. If we

set that the rate of burst traffic should be at least k-times the

line speed of the port, then the threshold of OC1 should be

set to 1
k−1 of the NEC threshold. In practice, rate of bursts

from incast scenarios should be at minimum twice the port

line-speed, so we can simply set OC1 threshold to B/n.

Evacuation decision relies on DC. DC is used to detect con-

secutive packet drop events. Consecutive packet drops can be

a result of long-live over-line-speed traffic or temporal traffic

changes. Therefore, the threshold should be large enough to

avoid frequent triggers. When α of DT is set to 1, at most

half of the total buffer is reserved when a port reaches its

threshold [7]. The number of consecutive packet drops exceeds

half of the total buffer indicates the traffic cannot be absorbed

even with the whole buffer and for the switch this traffic

is enough to be consider to be long-lived. Base on that we

conservatively set the threshold of DC to B/2.

Restoration decision is based on DEC, OC2, and the input

of the comparator. DEC detects consecutive packet dequeue

events, which is a characteristic behavior rather than quanti-

tative behavior. Therefore, DEC can be set to a small number

such as 3 or 5. OC2 limits the maximum size of burst. For

burst traffic of twice the port line rate, the whole buffer can

absorb burst with size up to twice the buffer space. The amount

of packets in a burst that the buffer can absorb decreases as

the traffic rate increases. For most scenarios, we can set the

threshold of OC2 to 2B. Finally, the lower bound of queue

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 09:54:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. An example of queue length and threshold evolution of TDT.

length is a “safety reassurance” for state restoration, which

should not be too sensitive considering in most cases the end

of long-lived traffic should be signaled by DEC instead of the

comparator. Setting it to half the evacuation threshold, i.e.,

1/2×B/n = B/2n is sufficient for most situations.

D. Putting it all together

In this part, we will use a simple but typical example to

show how TDT works. First, a burst starts at time t = 0
and finishes at t = 5ms, then a long-lived slightly over-line-

speed traffic starts at t = 10ms and continues over-line-speed

transmission until t = 30ms. Figure 5 shows the evolution of

queue length and corresponding threshold.

Port starts at “normal” control state, threshold decreases as

queue length increases. When state decision module detects

burst traffic by rapid queue length growth, it instructs the port

to change its state to “absorption” to raise its threshold to

the total amount of buffer, ensuring the absorption of traffic

burst. After the burst transmission has finished, state decision

module makes a restoration decision and put the port control

back to “normal”. When the second flow arrives at t = 10ms,

it does not trigger “absorption” state because its arriving

rate does not meet the speed requirement of a burst. Then

this queue length of this flow is control by typical dynamic

threshold as in “normal” state. When queue length converges

with threshold, it stops increasing and packet drop occurs.

When cumulative packet drop has reached a certain amount,

state decision module decide that this port is in “overwhelm”

traffic state, thus control state should transit to “evacuation”

and threshold undergo a cliff-like drop while queue length

decreases gradually due to the restriction of port transmission

speed. After the long-lived over-line-speed traffic has finished

transmitting, state decision module quickly let “normal” state

retake control and raise the threshold for future traffic.

V. EVALUATION

In this section, we compare the performance of TDT and ex-

isting buffer management policies with large scale simulation

based on ns-3 network simulator2 [26] and deep dive into the

reasons behind performance gain of TDT. We use DT [7] and

EDT [8] as comparison schemes of TDT. Evenly Split (ES)

and Complete Sharing (CS) are also used as auxiliary base-

lines. We also implement TDT and its comparison dynamic

2Vanilla ns-3 simulator does not support shared memory switch architecture
and threshold control. We implement total buffer control and port queue
threshold control by adding static functions and buffer-related variables to
ns-3 source code using C++ programming.

threshold policies in real DPDK testbed and compare their

performance of flow completion times.

A. Micro-benchmarks

In this section, we consider a 16-port shared memory switch

with 1MB buffer and 1Gbps port line speed [8], [27]. Packet

size is set to 1500 bytes which makes the total buffer size 667

packets. We use 1 as the control factor α of DT, EDT and

”normal” state of TDT as suggested in [7]. Parameters of EDT

are set according to [8] as C1 = 3, C2 = 8, TM1 = 2.1ms,

TM2 = 10ms. As for TDT, threshold of NEC, DEC, DC,

OC1 and OC2 are set to 42, 3, 333, 42 and 1344, respectively,

according to suggested parameter setting in §IV-C.

Burst absorption. First, we use a simple scenario with long-

lived over-line-speed traffic and burst traffic to demonstrate

how TDT improves the absorption capacity of burst traffic

by proactive evacuation. Queue length evolution of TDT and

its comparison policies are shown in Figure 6. The first

two ports transmits 2Gbps traffic throughout the entire 0.2s
experiment. The third port start transmitting 8Gbps burst traffic

at t = 0.15s and finish 1ms later. As shown in Figure 6(a),

due to strict queue length fairness restriction of DT, packet

drop of burst occurs almost immediately when queue length

of port 3 reaches the queue length of the first two ports. EDT

improves its burst absorption capacity by relaxing threshold

restriction for port 3, as shown in Figure 6(b). Unfortunately,

burst absorption of EDT stops just after a while when buffer

overflow occurs, as a consequence of meaningless buffer

occupation of port 1 and port 2. As for TDT in Figure 6(c),

early proactive evacuation of queues of port 1 and port 2 pays

off when burst traffic arrives at port 3. TDT allows ports that

transmit bursty traffic to use up to the entire buffer without

being limited by the evacuation rate of ports occupying buffer.

It may come as a surprise that proactive evacuation makes

TDT a “fairer” policy, in terms of throughput of different

port. As shown in Figure 6(d), TDT achieves nearly the

optimal throughput in all three ports whereas its comparison

policies fail to bring similar additional throughput for port 3

as for the first two ports. By getting rid of meaningless queue

length restrictions, TDT can fairly provide as much additional

throughput as possible for different ports.

Delay reduction. We use a different micro-benchmark to

demonstrate TDT’s improvement on delay-sensitive traffic and

the reasons behind. Figure 7 shows the delay results of single

active port transmitting 2Gbps traffic from t = 0 to t = 0.2s
and a delay-sensitive flow starts right after t = 0.2s, with

0.8Gbps arriving rate and lasts for 10ms. We focus on the

delay of the second flow. As shown in Figure 7(a), TDT have

an identical delay performance as ES, which outperforms DT

and EDT by a large margin. CS is considered as the upper

bound for delay. The reason behind lower delay of TDT is

straight-forward, reduction of average queue length. Queuing

delay is determined by the total amount of packets in queue

when a packet arrives at a port. As shown in Figure 7(b), by

proactive evacuation of meaningless buffer occupation, TDT

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 09:54:52 UTC from IEEE Xplore. Restrictions apply.

(a) DT. (b) EDT. (c) TDT. (d) Throughput.

Fig. 6. Queue length evolution of two ports transmitting long-lived over-line-speed traffic and burst traffic arrives at the third port at 0.15s.

(a) CDF of delay. (b) CDF of queue length.

Fig. 7. TDT reduce delay by keeping a relatively short queue length.

can reduce unnecessary queue length in ports transmitting a

lot of long-term traffic without affecting its throughput.

B. Large scale simulation

We test TDT and its comparison policies on large-scale

stochastic scenarios in this section. Switch and parameter

settings are identical as §V-A. Following to the experiment

settings in [7] and [8], we consider the following scenario:

Among 16 output ports, 8 of them are transmitting mixed

traffic which is composed of poisson background traffic with

20% average load and burst traffic with 8Gbps arriving rate,

250us average ”on” time and 19.75ms average ”off” time.

The total average load of is 30%. We test the lossless burst

absorption capability of these ports with 0,1 or 2 additional

port(s) transmitting long-lived over-line-speed traffic and dis-

cuss the performance of TDT and its comparison policies in

terms absorption of loss-sensitive burst, throughput of long-

lived traffic and delay of light load short traffic.

Loss-sensitive. When no port is transmitting long-lived over-

line-speed traffic, as shown in Figure 8(a), TDT can achieve a

similar lossless ratio as EDT because in that case hardly any

port needs evacuation. DT achieves poor absorption perfor-

mance due to strict threshold restriction. However, as shown

in Figure 8(b) and Figure 8(c), when overwhelmed ports exist,

performance of EDT drops dramatically while performance of

TDT remains basically unchanged. Especially, in the case of

two overwhelmed ports, almost all burst traffic longer than

0.5ms cannot be absorbed using DT or EDT, whereas TDT

achieves an over 80% lossless ratio when burst are no longer

than 0.75ms and an over 50% lossless ratio otherwise. In

general, the overall lossless ratio of Figure 8(c) are 5.5%,

57.8%, 92.7%, respectively, which means TDT has a ∼60%

performance gain than the best performing existing policies

when it comes to absorption of loss-sensitive burst traffic.

Delay-sensitive. Figure 8(d) focus on the delay distribution of

background traffic. Notice that in Figure 8(d) only delay of

background traffic in overwhelmed ports is presented, since

delay in ports absorbing burst traffic cannot be optimized

simultaneously as burst absorption capability on the port level.

For DT and EDT, most of the time queue length is equal to

port dynamic threshold, i.e., half the total buffer space when

only one port is overwhelmed and α of DT is 1, which causes

a half-buffering-time queuing delay for packets. CS always

allow a single port to occupy as much as the entire buffer. For

an overwhelmed port, this means queue length is as long as

possible within the total buffer limit, causing a queuing delay

close to buffering time for packets. With proactive evacuation,

TDT can keep the average queue length similar to ES, resulting

in less than 2ms queuing delay for more than 90% packets.

Throughput-sensitive. As discussed in §III-B, proactive evac-

uation of TDT should not affect the throughput of long-lived

over-line-speed traffic. Figure 8(e) shows the throughput of the

long-lived over-line-speed flow. All three dynamic threshold

policies have similar throuput results. EDT achieves a slight

lower throughput than DT and TDT due to its time-dependent

design which potentially leads to reletively long-term buffer

occupation of ports transmitting burst traffic that further causes

throughput degradation of overwhelmed ports.

Fairness. TDT is fair among different ports on the long run

because when multiple ports are active, TDT ensures each

port has a similar chance to obtain additional throughput.

We use the throughput fairness combined with Jain’s Fairness

Index [28] to measure fairness numerically. Figure 8(f) shows

the overall fairness index of different ports. All policies

actually have similar fairness indexes except CS, which has no

queue length restriction and is considered the most “unfair”

policy. Let us zoom in on the fairness attenuation3 of three

dynamic threshold policies. TDT is “fairer” than DT and EDT

because it can achieve closer to the ideal throughput4 on ports

with burst traffic while achieve nearly ideal throughput on

ports transmitting long-lived traffic.

C. TDT in a DPDK-based switch

We implement TDT and its comparison buffer management

policies on a DPDK [30] testbed with 4 host servers con-

necting to an emulating switch with four ports. The server

3This metric is proposed in [29] based on the concept of measuring relative
performance degradation.

4Ideal throughput is obtained by assuming every port can monopolize the
entire shared buffer.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 09:54:52 UTC from IEEE Xplore. Restrictions apply.

(a) Burst absorption with no overwhelmed port. (b) Burst absorption with one overwhelmed port. (c) Burst absorption with two overwhelmed ports.

(d) Delay of background traf-
fic.

(e) Throughput of long-
lived traffic.

(f) Overall fairness. (g) Zooming in on fairness at-
tenuation.

Fig. 8. Performance of TDT and its comparison policies in large scale stochastic simulation.

(a) Mean FCT. (b) CDF of relative gain over DT.

Fig. 9. TDT reduces FCT on DPDK testbed.

emulating the switch has a 28-core Intel Xeon E5-2660

2.00GHz CPU, along with 32GB of memory, a hard disk

with 2TB storage, and four Intel 82599ES 10-Gigabit Ethernet

NICs. We use Ubuntu 16.04 LTS GNU/Linux kernel 4.15.0

as the operating system. The other four servers have 4-core

Intel i3-3220 3.30GHz CPU and an Intel 82599ES 10-Gigabit

Ethernet NIC. Buffer size of the switch server is set to 256KB

and we use a rate limiter to limit the sending rate of each port

to 1Gbps. TCP CUBIC [24] is used as the congestion control

algorithm [31]. We use an empirical traffic generator [32]

to generator traffic of simple client/server application. In our

experiment, we use the WebSearch flow size distribution given

in [5]. Two active ports are set to have different offered load.

A port has 40% average load while the other is overwhelmed

over 100% average load. We focus on the flow completion

time (FCT) [33] of the first port under the influence of the

overwhelmed port. Using different random seed, we repeat

the experiment 50 times and report the average FCT. We have

generated over 20,000 flows in total.

The parameters of EDT and TDT are adjusted according

to port number and buffer size. The threshold of dequeue

counter (C1 in EDT, DEC in TDT) are set a little larger

because TCP data flow has relatively larger fluctuations. Mean

FCT results of TDT and its comparison policies are shown in

Figure 9(a). On average, TDT reduces the flow completion

time by 12% compared to DT, and 8% compared to EDT.

As shown in Figure 9(b), more than 80% of the time, TDT

performs better than DT, and the maximum gain can reach

up to 50%. EDT also outperforms DT, but not as much as

TDT. The reason for TDT’s better performance is its time-

independent feature and proactive evacuation design. TDT re-

serves more buffer for burst absorption by proactive evacuation

and accurately determine port traffic type in a timely manner.

On the contrary, the time-dependent design makes it difficult

for EDT to accurately determine the arrival and departure of

burst traffic, and the buffer occupied by the overwhelmed port

limits the other port’s ability to absorb burst traffic.

VI. CONCLUSION

In this paper, we demonstrate that buffer occupation caused

by blind pursuit of buffer utilization and misleading definition

of port fairness does not contribute to throughput but under-

mines other metrics. To avoid meaningless buffer occupation,

we propose the design concepts of traffic-aware buffer man-

agement policy and a specific policy, TDT, that simultaneously

optimize for loss-sensitive burst traffic, throughput-sensitive

long-lived traffic and delay-sensitive short traffic. By utilizing

the buffer as much as possible to absorb burst traffic and

proactively evacuate meaningless buffer occupation, TDT can

fully exploit the benefit of buffer. We test TDT on the ns-3

simulator and a real DPDK switch prototype. Experimental

results show TDT outperforms existing policies in terms of

burst absorption, throughput, delay and FCT of TCP flows,

while maintaining throughput fairness among ports.

ACKNOWLEDGMENT

This work is supported by NSFC (No. 61872211), National

Key R&D Program of China (no. 2018YFB1800303, 2017YF-

B1010002).

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 09:54:52 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
ACM SIGCOMM Computer Communication Review, vol. 34, no. 4, pp.
281–292, 2004.

[2] S. Das and R. Sankar, “Broadcom smart-buffer technology in data center
switches for cost-effective performance scaling of cloud applications,”
2012.

[3] “Intelligent buffer management on cis-
co nexus 9000 series switches white paper.”
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-
9000-series-switches/white-paper-c11-738488.html, accessed August
15, 2020.

[4] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav et al., “Conga:
Distributed congestion-aware load balancing for datacenters,” in ACM
SIGCOMM, 2014.

[5] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in ACM
SIGCOMM, 2010.

[6] U. Cummings, A. Lines, P. Pelletier, and R. Southworth, “Shared-
memory switch fabric architecture,” Oct. 12 2010, uS Patent 7,814,280.

[7] A. K. Choudhury and E. L. Hahne, “Dynamic queue length thresholds
for shared-memory packet switches,” IEEE/ACM Transactions On Net-
working, 1998.

[8] D. Shan, W. Jiang, and F. Ren, “Analyzing and enhancing dynamic
threshold policy of data center switches,” IEEE TPDS, 2017.

[9] H. Yousefi’zadeh and E. A. Jonckheere, “Dynamic neural-based buffer
management for queuing systems with self-similar characteristics,” IEEE
Transactions on Neural Networks, 2005.

[10] E. L. Hahne and A. K. Choudhury, “Dynamic queue length thresholds
for multiple loss priorities,” IEEE/ACM Transactions On Networking,
2002.

[11] A. Kesselman and Y. Mansour, “Harmonic buffer management policy
for shared memory switches,” Theoretical Computer Science, 2004.

[12] G. Ascia, V. Catania, and D. Panno, “An evolutionary management
scheme in high-performance packet switches,” IEEE/ACM Transactions
On Networking, 2005.

[13] S. X. Wei, E. J. Coyle, and M.-T. Hsiao, “An optimal buffer management
policy for high-performance packet switching,” in IEEE GLOBECOM,
1991.

[14] M. Apostolaki, L. Vanbever, and M. Ghobadi, “Fab: Toward flow-
aware buffer sharing on programmable switches,” in Online Program:
Workshop on Buffer Sizing, 2019.

[15] I. Cidon, L. Georgiadis, R. Guerin, and A. Khamisy, “Optimal buffer
sharing,” IEEE Journal on Selected Areas in Communications, 1995.

[16] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control for large-
scale rdma deployments,” ACM SIGCOMM, 2015.

[17] “Workshop on buffer sizing.” http://buffer-workshop.stanford.edu, ac-
cessed Augest 15, 2020.

[18] H. R. Varian, Intermediate microeconomics with calculus: a modern
approach. WW Norton & Company, 2014.

[19] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-resolution
measurement of data center microbursts,” in Proceedings of the 2017
Internet Measurement Conference, 2017, pp. 78–85.

[20] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” ACM SIGCOMM,
2011.

[21] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter
tcp (d2tcp),” ACM SIGCOMM, 2012.

[22] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh et al., “Hpcc: high precision congestion
control,” in ACM SIGCOMM, 2019.

[23] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: Congestion-based congestion control,” Queue, vol. 14, no. 5, pp.
20–53, 2016.

[24] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed tcp
variant,” ACM SIGOPS, 2008.

[25] A. Mishra, X. Sun, A. Jain, S. Pande, R. Joshi, and B. Leong, “The
great internet tcp congestion control census,” Proceedings of the ACM
on Measurement and Analysis of Computing Systems, vol. 3, no. 3, pp.
1–24, 2019.

[26] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in
Modeling and tools for network simulation. Springer, 2010.

[27] “Packet buffers.” https://people.ucsc.edu/ warner/buffer.html, accessed
June 29, 2020.

[28] R. Jain, A. Durresi, and G. Babic, “Throughput fairness index: An
explanation,” in ATM Forum contribution, 1999.

[29] D. C. Reeve, “A New Blueprint for Network QoS,”
Ph.D. dissertation, Computing Laboratory, University of Kent,
Canterbury, Kent, UK, August 2003. [Online]. Available:
http://www.cs.kent.ac.uk/pubs/2003/1892

[30] D. Intel, “Data plane development kit,” 2014.
[31] B. Levasseur, M. Claypool, and R. Kinicki, “A tcp cubic implementation

in ns-3,” in Proceedings of the 2014 Workshop on ns-3, 2014.
[32] “empirical-traffice-gen.” https://github.com/datacenter/empirical-traffic-

gen.git, accessed June 29, 2020.
[33] N. Dukkipati and N. McKeown, “Why flow-completion time is the right

metric for congestion control,” ACM SIGCOMM, 2006.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 09:54:52 UTC from IEEE Xplore. Restrictions apply.

		2021-07-21T04:00:34-0400
	Preflight Ticket Signature

